Targeting DNA-binding drugs to sequence-specific transcription factor.DNA complexes. Differential effects of intercalating and minor groove binding drugs.

نویسندگان

  • J J Welch
  • F J Rauscher
  • T A Beerman
چکیده

Intercalating, minor groove binding, and covalently bonding drugs were evaluated by mobility shift assays for their ability to interfere with transcription factors binding to their respective DNA recognition sequences. The Cys2His2 zinc finger proteins EGR1, WT1, and NIL2A, the basic leucine-zipper protein wbJun/wbFos, and the minor groove binding protein hTBP were chosen as representative transcription factors. Their DNA recognition sites include G/C-rich, mixed, and A/T-rich sequences. The intercalators nogalamycin and hedamycin, and the G/C-specific minor groove binding drug chromomycin A3 were the most potent drugs, preventing transcription factor.DNA complex formation at concentrations less than 1 microM. Similar concentrations of chromomycin A3 disrupted preformed complexes while nogalamycin and hedamycin were 50-fold less potent if proteins were allowed to bind DNA prior to drug treatment. Echinomycin inhibited EGR1.DNA complex formation 50% at 5 microM but had little effect on the formation of NIL2A.DNA complexes. Conversely, doxorubicin was found to inhibit NIL2A complex formation 50% at less than 1 microM, but did not achieve this level of inhibition of EGR1/DNA complex formation even at 50 microM. The A/T-directed minor groove binding drugs, while inhibiting hTBP at submicromolar concentrations, had no effect on either EGR1 or NIL2A.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The binding mode of drugs to the TAR RNA of HIV-1 studied by electric linear dichroism.

For the first time, the interaction between a series of small molecules and the TAR RNA of HIV-1 has been investigated by electric linear dichroism (ELD). The compounds tested include the DNA intercalating drugs proflavine and ethidium bromide and an amsacrine-4-carboxamide DNA-threading intercalator as well as the AT-specific DNA minor groove binders netropsin, Hoechst 33258, berenil and DAPI....

متن کامل

Specific binding of Hoechst 33258 to site 1 thymidylate synthase mRNA.

The translational initiator codon in thymidylate synthetase (TS) mRNA is located in a stem-loop structure with a CC bubble. TS is an important target for anticancer drugs. Aminoglycoside antibiotics have been shown to specifically bind to TS mRNA site 1 constructs and, furthermore, specific binding requires the non-duplex CC bubble region. It is shown here that DNA intercalating agents and DNA ...

متن کامل

Role of Minor Groove Width and Hydration Pattern on Amsacrine Interaction with DNA

Amsacrine is an anilinoacridine derivative anticancer drug, used to treat a wide variety of malignancies. In cells, amsacrine poisons topoisomerase 2 by stabilizing DNA-drug-enzyme ternary complex. Presence of amsacrine increases the steady-state concentration of these ternary complexes which in turn hampers DNA replication and results in subsequent cell death. Due to reversible binding and rap...

متن کامل

Antineoplastic DNA-binding compounds: intercalating and minor groove binding drugs.

DNA intercalating and minor groove binding compounds are new weapons in the battle against malignant diseases. These antineoplastic agents target the DNA molecule and interfere with the cell cycle leading to rapidly proliferating cell death. They are mainly derivates of a naturally occurring organic compound derived from a microorganism or plant. Intercalators usually act as topoisomerase I and...

متن کامل

DNA structural similarity in the 2:1 complexes of the antitumor drugs trabectedin (Yondelis) and chromomycin A3 with an oligonucleotide sequence containing two adjacent TGG binding sites on opposing strands.

Yondelis (trabectedin) is an antitumor ecteinascidin that binds covalently to the 2-amino group of the central guanine in the minor groove of selected DNA pyrimidine-G-G and purine-G-C triplets. Chromomycin A3 is an aureolic acid derivative that binds noncovalently to the DNA minor groove in G/C-rich triplet sites as a metal-chelated dimer. Despite their different binding modes, the cytotoxicit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 269 49  شماره 

صفحات  -

تاریخ انتشار 1994